7大類主流的3D打印技術,一文全部看懂
有許多人認為3D打印就是從熱噴嘴中擠出材料并堆疊成形狀,但其實3D打印遠不止于此!今天南極熊將介紹七大類3D打印工藝,即使是3D打印小白也能清晰地區分不同的3D打印工藝。

事實上,3D 打印也稱為增材制造,是一個總稱,涵蓋了幾種截然不同的 3D 打印工藝。這些技術是天壤之別,但關鍵過程是相同的。例如,所有 3D 打印都從數字模型開始,因為該技術本質上是數字化的。零件或產品最初是使用計算機輔助設計 (CAD) 軟件設計或從數字零件庫獲取的電子文件。然后設計文件通過特殊的構建準備軟件將其分解成切片或層以進行 3D 打印,生成3D打印機要遵循的路徑指令。接下來您將了解這些技術之間的區別以及每種技術的典型用途。
為什么是 7 種類型?
增材制造的類型可以根據它們生產的產品或使用的材料類型來劃分,國際標準組織 (ISO) 將其分為七種一般類型(但這七個3D打印類別也難以涵蓋越來越多的技術子類型和混合技術)。:
●材料擠出
●還原聚合
●粉床融合
●材料噴射
●粘合劑噴射
●定向能沉積
●片材層壓
一、材料擠出

△材料擠出3D打印
材料擠出顧名思義:材料通過噴嘴擠出。通常情況下,這種材料是一種塑料細絲,通過一個加熱的噴嘴進行熔化和擠出。打印機沿著通過軟件得到的工藝路徑將材料放置在構建平臺上。然后燈絲冷卻并凝固形成固體物體。這是最常見的 3D 打印形式。乍一看這聽起來很簡單,但考慮到擠出的材料,包括塑料、金屬、混凝土、生物凝膠和各種食品,這其實是一個非常廣泛的類別。這種類型的 3D 打印機價格從100美元到七位數不等。
●材料擠出的子類型:熔融沉積建模 (FDM)、建筑 3D 打印、微型 3D 打印、生物 3D 打印
●材料:塑料、金屬、食品、混凝土等
●尺寸精度:±0.5%(下限±0.5mm)
●常見應用:原型、電氣外殼、形狀和配合測試、夾具和夾具、熔模鑄造模型、房屋等。
●優勢:成本最低的 3D 打印方法,材料范圍廣
●缺點:通常材料性能較低(強度、耐用性等),通常尺寸精度不高
1.熔融沉積成型 (FDM)

△FDM 零件可以在各種 3D 打印機上用金屬或塑料制成
FDM 3D 打印機是一個價值數十億美元的市場,擁有數以千計的機器,從基本型號到制造商的復雜型號。FDM機器被稱為熔絲制造 (FFF),這是完全相同的技術。與所有 3D 打印技術一樣,FDM 從數字模型開始,然后將其轉換為3D打印機可以遵循的路徑。使用 FDM,將線軸上的一根(或一次幾根)燈絲裝入 3D 打印機,然后送入擠出頭中的打印機噴嘴。打印機噴嘴或多個噴嘴被加熱到所需溫度,使燈絲軟化,從而使連續的層連接起來形成一個堅固的部件。
當打印機沿 XY 平面上的指定坐標移動擠出頭時,它會繼續鋪設第一層。然后擠出頭上升到下一個高度(Z 平面),重復打印橫截面的過程,一層一層地構建,直到物體完全成型。根據對象的幾何形狀,有時需要添加支撐結構以在打印時支撐模型,例如,如果模型具有陡峭的懸垂部分。這些支撐在打印后被移除。一些支撐結構材料可以溶解在水或另一種溶液中。

△FDM 3D 打印機為業余愛好者、小型企業和制造商提供范圍廣泛的機器(來源:Creality、Raise3D、Stratasys)
2.3D生物打印

△3D 生物打印與傳統 3D 打印類似,但原料差異很大
3D 生物打印或生物 3D 打印是一種增材制造工藝,其中將有機或生物材料(例如活細胞和營養素)結合起來以創建類似組織的天然三維結構。換句話說,生物打印是一種3D打印,可以生產從骨骼組織和血管到活組織的任何東西。它用于各種醫學研究和應用,包括組織工程、藥物測試和開發,以及創新的再生醫學療法。3D 生物打印的實際定義仍在不斷發展。從本質上講,3D 生物打印的工作原理與 FDM 3D 打印類似,并且屬于材料擠出系列。(盡管擠出并不是唯一的生物打印方法)
3D 生物打印使用從針排出的材料(生物墨水)來創建打印層。這些被稱為生物墨水的材料主要由活物質組成,例如載體材料中的細胞——如膠原蛋白、明膠、透明質酸、蠶絲、海藻酸鹽或納米纖維素,充當結構生長和營養物質的分子支架,提供支持。
3.建筑 3D 打印

△建筑 3D 打印
建筑 3D 打印是一個快速發展的材料擠出領域。該技術涉及使用超大型 3D 打印機(通常高達數十米)從噴嘴中擠出混凝土等建筑材料。這些機器通常以龍門架或機械臂系統的形式出現。3D建筑打印技術如今用于住宅、建筑特色以及從水井到墻壁的建筑項目。有研究者表示,它有可能顯著改變整個建筑行業,因為它減少了勞動力需求并減少了建筑垃圾。
美國和歐洲有數十座 3D 打印房屋,并且正在研究開發 3D 建筑技術,該技術將使用在月球和火星上發現的材料為未來的探險隊建造棲息地。用當地土壤代替混凝土打印作為一種更可持續的建筑方法也受到關注。
二、還原聚合

△使用激光的還原聚合
桶聚合(也稱為樹脂 3D 打印)是一系列 3D 打印工藝,它使用光源在桶中選擇性地固化(或硬化)光敏聚合物樹脂。換句話說,光線精確地指向液體塑料的特定點或區域以使其硬化。第一層固化后,構建平臺將向上或向下移動(取決于打印機)少量(通常在 0.01 和 0.05 毫米之間),下一層固化,與前一層連接。逐層重復此過程,直到形成 3D 部件。3D 打印過程完成后,清潔物體以去除剩余的液態樹脂并進行后固化(在陽光下或紫外線室中)以增強部件的機械性能。
三種最常見的桶聚合形式是立體光刻 (SLA)、數字光處理 (DLP)和液晶顯示器 (LCD),也稱為掩模立體光刻 (MSLA)。這些類型的 3D 打印技術之間的根本區別在于光源及其用于固化樹脂的方式。

△大桶聚合利用光逐層硬化光敏樹脂
一些 3D 打印機制造商,尤其是那些制造專業級 3D 打印機的制造商,已經開發出獨特且獲得專利的 光聚合變體,因此您可能會在市場上看到不同的技術名稱。一家工業 3D 打印機制造商 Carbon 使用一種稱為數字光合成(DLS) 的桶聚合技術,Stratasys 的 Origin 稱其技術為可編程光聚合(P3),Formlabs 提供其稱為低力立體光刻(LFS) 的技術,而 Azul 3D 是第一個將大面積快速打印(HARP) 形式的大桶聚合商業化。還有基于光刻的金屬制造 (LMM)、投影微立體光刻(PμSL) 和數字復合材料制造(DCM),這是一種填充光聚合物技術,可將功能性添加劑(例如金屬和陶瓷纖維)引入液體樹脂中。
●3D 打印技術的類型:立體光刻 (SLA)、液晶顯示器 (LCD)、數字光處理 (DLP)、微立體光刻 (μSLA) 等。
●材料:光聚合物樹脂(可澆注、透明、工業、生物相容性等)
●尺寸精度:±0.5%(下限為 ±0.15 毫米或 5 納米,使用 μSLA)
●常見應用:注塑模狀聚合物原型和最終用途部件、珠寶鑄造、牙科應用、消費品
●優勢:光滑的表面光潔度,精細的特征細節
1.立體光刻 (SLA)

△立體光刻 (SLA)來自 3D Systems、DWS 和 Formlabs 的 SLA 3D 打印示例
SLA是世界上第一個3D打印技術。立體光刻技術由查克·赫爾 (Chuck Hull) 于 1986 年發明,他為該技術申請了專利,并成立了 3D Systems 公司以將其商業化。如今,該技術可供來自眾多 3D 打印機制造商的愛好者和專業人士使用。SLA使用激激光束對準一桶樹脂,選擇性地固化打印區域內物體的橫截面,逐層建造。當大多數 SLA 打印機使用固態激光來固化部件。這種桶聚合的一個缺點是,與我們的下一種方法 (DLP) 相比,點激光可能需要更長的時間來追蹤物體的橫截面,后者會閃爍光線以立即硬化整個層。然而,激光可以產生更強的光,這是某些工程級樹脂所需要的。

△SLA 3D 打印機使用一個或多個激光一次追蹤和固化單層樹脂
微立體光刻 (μSLA)
微立體光刻技術可以打印微型部件,分辨率在 2 微米 (μm) 到 50 微米之間。作為參考,人類頭發的平均寬度為 75 微米。它是“微型 3D 打印”技術之一。μSLA 涉及將感光材料(液態樹脂)暴露在紫外激光下。不同之處在于專用樹脂、激光的復雜性以及透鏡的添加,它們會產生幾乎令人難以置信的小光點。

△Nanoscribe 和 Microlight3D 是 TPP 3D 打印機的兩家領先制造商(來源:Nanoscribe、Microlight3D)
雙光子聚合 (TPP)
另一種微型3D打印技術TPP(也稱為2PP)可以歸為SLA,因為它也使用激光和光敏樹脂,它可以打印比 μSLA 更小的部件,小至 0.1 微米。TPP使用脈沖飛秒激光聚焦到一大桶特殊樹脂中的一個狹窄點。然后使用該點固化樹脂中的單個3D像素,也稱為體素。通過在預定義的路徑中逐層依次固化這些納米級到微米級的小體素。TPP 目前用于研究、醫療應用和微型零件的制造,例如微型電極和光學傳感器。

△微型 3D 打印:TPP 技術
2.數字光處理 (DLP)

△Anycubic、Carbon 和 ETEC 的 DLP 3D 打印部件
DLP 3D 打印使用數字光投射器(而不是激光)在一層或樹脂上同時閃爍每一層的單個圖像(或為較大的部件多次曝光)。DLP(比 SLA 更常見)用于在單個批次中生產更大的零件或更大體積的零件,因為無論構建中有多少零件,每一層曝光都需要完全相同的時間,比SLA 中的點激光方法效率更高。每一層的圖像都由正方形像素組成,導致一層由稱為體素的小矩形塊形成。使用發光二極管 (LED) 屏幕或 UV 光源(燈)將光投射到樹脂上,并通過數字微鏡設備 (DMD) 將光投射到構建表面。

△數字光處理 (DLP) 樹脂 3D 打印機有從業余愛好版本也有完整的制造生產機器
現代 DLP 投影儀通常有數千個微米大小的 LED 作為光源。它們的開關狀態是單獨控制的,可以提高 XY 分辨率。并不是所有的 DLP 3D 打印機都是一樣的,光源的功率、它通過的鏡頭、DMD 的質量以及構成一臺價值 300 美元的機器的許多其他零部件都有很大的不同與超過 200,000 美元的機器相比。
自上而下的 DLP
一些 DLP 3D 打印機的光源安裝在打印機的頂部,向下照射到樹脂桶上,而不是向上照射。這些“自上而下”的機器從頂部閃現一層圖像,一次固化一層,然后將固化層放回大桶中。每次降低構建板時,安裝在大桶頂部的重涂機都會在樹脂上來回移動以整平新層。制造商表示,由于打印過程不會對抗重力,因此這種方法可以為較大的打印件產生更穩定的零件輸出。自下而上打印時,可以從構建板上垂直懸掛多少重量是有限制的。樹脂桶還在打印時支撐打印件,減少了對支撐結構的需求。

△BMF 的 MicroArch S230 可以打印小至 2 微米的聚合物或陶瓷的詳細部件(來源:BMF)
投影微立體光刻 (PμSL)
作為一種獨特類型的桶聚合本身,將PμSL 歸為 DLP 的子類別。這是另一種微型3D打印技術。PμSL 使用來自投影儀的紫外線來固化微米級(2 微米分辨率和低至 5 微米層高)的特殊配方樹脂層。這種增材制造技術因其低成本、準確性、速度以及可使用的材料范圍(包括聚合物、生物材料和陶瓷)而不斷發展。它已顯示出從微流體和組織工程到微光學和生物醫學微型設備的應用潛力。
基于光刻的金屬制造 (LMM)
這是DLP的另一個”遠親“,這種使用光和樹脂進行3D打印的方法可以為手術工具和微機械零件等應用創建微小的金屬零件。在 LMM 中,金屬粉末均勻分散在光敏樹脂中,然后通過投影儀用藍光曝光進行選擇性聚合。打印后,素坯部件的聚合物成分被去除,留下全金屬的脫脂部件,這些部件在熔爐中的燒結過程中完成。原料包括不銹鋼、鈦、鎢、黃銅、銅、銀和金。

△使用 LMM 技術在 Incus 3D 打印上制作的微型金屬 3d 打印部件
3.液晶顯示器 (LCD)

△來自 Elegoo、Photocentric 和 Nexa3D 的 LCD 3D 打印部件
液晶顯示器 (LCD),也稱為掩模立體光刻 (MSLA),與上述 DLP 非常相似,不同之處在于它使用 LCD 屏幕而不是數字微鏡設備 (DMD),這對 3D 打印機的價格有顯著影響。與 DLP 一樣,LCD 光掩模是數字顯示的,由方形像素組成。LCD 光掩模的像素大小決定了打印的粒度。因此,XY 精度是固定的,不依賴于鏡頭的變焦或縮放程度,就像 DLP 的情況一樣。DLP 的打印機和 LCD 技術之間的另一個區別是,后者使用數百個單獨發射器的陣列,而不是像激光二極管或 DLP 燈泡那樣的單點發射光源。

△如今,LCD 樹脂 3D 打印技術正在從消費機器轉向工業機器
與 DLP 類似,LCD 在某些條件下可以實現比 SLA 更快的打印時間。這是因為整個層一次曝光,而不是用激光點追蹤橫截面積。由于 LCD 單元成本低,這項技術已成為低價桌面樹脂打印機領域的首選技術,但這并不意味著它沒有得到專業使用,一些工業 3D 打印機制造商正在突破技術極限并取得令人矚目的成果。
(責任編輯:admin)